O Capítulo Estudantil IEEE Power and Energy Society UFBA esteve presente na VII Edição da Reunião Seccional de Ramos Estudantis da Seção Nordeste do IEEE, que ocorreu em Campina Grande, na Paraíba, entre os dias 08 e 10 de setembro.
A RSR é a Reunião Seccional de Ramos Estudantis da Seção Nordeste Brasil. Esse é um evento que ocorre anualmente sendo sediado, realizado e organizado por um Ramo Estudantil da Seção em sua cidade de origem com o objetivo de proporcionar troca de conhecimentos, novas experiências, networking e incentivo às parcerias; promover aprendizagem de habilidades relacionadas à diversas áreas mas, principalmente, de STEM e melhorar a difusão tecnológica e de atividades estudantis e profissionais do IEEE nas comunidades participantes.
Durante o evento nossos membros participaram de diversas atividades como Visitas Técnicas, apresentações de Casos de Sucesso, Reunião de Presidentes de Ramos, Reunião de Capítulos Estudantis, palestras e a cerimônia de premiação do IEEE Seção Nordeste SAC Awards.
Na cerimônia de premiação o IEEE PES UFBA conquistou os seguintes prêmios:
🏆1° Lugar – IEEE PES Outstanding Volunteer Award – Márcio Luís
🏆1° Lugar – Casos de Sucesso Categoria de Desenvolvimento Profissional – 1° Circuito de Palestras IEEE PES UFBA
🏆Menção Honrosa – Casos de Sucesso Categoria de Atividades Técnicas – Pré-SEP
Prêmio IEEE PES Outstanding Volunteer Award
Casos de Sucesso Categoria de Desenvolvimento Profissional
Casos de Sucesso Categoria Atividades Técnicas
Membros do IEEE PES UFBA na UFCG durante o evento
Reunião de Capítulos Técnicos da Seção Nordeste
Reunião de Presidentes da Seção Nordeste
Apresentação de Casos de Sucesso
Apresentação de Casos de Sucesso
Grupos que apresentaram Casos de Sucesso durante a RSR
Cerimônia de Elevação dos Young Professionals da Seção Nordeste do IEEE
Apresentação do IEEE PES UFBA durante a Feira de Ramos
Segundo a ABVE (Associação Brasileira de Veículos Elétricos) a projeção de crescimento do mercado nacional é de 300% a 500% no que se refere aos 5 anos seguintes. Um fato curioso especificamente sobre o mercado de carros elétricos no Brasil é que o aumento da concorrência nos últimos anos vem causando uma queda nos preços, entretanto o país ainda não possui pontos de recargas suficientes para subsidiar a demanda do mercado, barrando o crescimento da comercialização e uso.
Veículos elétricos são meios de transporte que funcionam essencialmente com eletricidade. Também chamados de “VE’s”, eles utilizam um ou mais motores para tração e propulsão. É importante salientar que nem todos VE’s se comportam da mesma maneira, existem categorias híbridas plug-in, os que operam exclusivamente por eletricidade, os que possuem células de combustível de hidrogênio e alguns outros estilos.
Figura Ilustrativa
Outro aspecto a ser levado em consideração é o crescimento do uso de fontes renováveis no mesmo período em que há uma projeção de crescimento do uso de VE’s. Segundo um estudo do Sebrae (Serviço Brasileiro de Apoio às Micro e Pequenas Empresas), a expectativa é de que, até 2040, a energia solar represente 32% do total da energia produzida no Brasil, liderando todas as matrizes do país. Nos últimos 3 anos, a energia solar centralizada cresceu em 200% e a energia solar para a solução de geração distribuída evoluiu em 2.000%. A Agência Nacional de Energia Elétrica (ANEEL) também indica que ainda em 2023 espera-se uma expansão na geração de 10,3 GW de capacidade instalada, sendo que as usinas solares centralizadas e eólicas serão responsáveis por 90% dessa expansão.
O setor de transporte, segundo a IEA (Agência Internacional de Energia Elétrica) a estimativa é de que 20% das emissões globais de gases do efeito estufa sejam geradas pelo setor, aspecto que no Brasil sofre um agravante e chegando aos 40%. Dessa forma, a combinação das tendências de mudanças na modalidade de transporte urbano e geração de energia elétrica devem ajudar na manutenção e avanços no que diz respeito a desacelerar as mudanças climáticas e ambientais, ajudando também a atingir as metas estabelecidas no Acordo de Paris.
Modalidades e características:
Carro Elétrico Híbrido (HEV):
De maneira geral, essa modalidade utiliza essencialmente combustíveis convencionais, com motor de combustão interna e motor elétrico com suas respectivas baterias operando de maneira complementar ao bom e velho funcionamento baseado na combustão.
Carro Elétrico Híbrido Plug In (PHEV):
Também combina o motor de combustão convencional ao conjunto motor elétrico e baterias. Entretanto, a bateria pode ser abastecida por um cabo de alimentação externa.
Carro elétrico a bateria (BEV):
100% elétrico, utiliza a eletricidade que é armazenada nas baterias que são combinadas ao motor elétrico para operação. Podendo ser recarregado utilizando a rede elétrica.
Carro a Célula de Combustível (FCEV):
Utiliza gás hidrogênio como fonte para produzir eletricidade e alimentar o motor elétrico do carro.
Figura representando as diferentes marcas e modelos
Conclusão:
Os veículos elétricos elétricos, possuem modalidades diversas para necessidades e oportunidades diversas. Mas um aspecto é quase certeiro de afirmar, a tendência de crescimento e participação dessa modalidade de transporte tende a crescer e muito nos próximos anos, a depender dos investimentos estruturais para receber essa evolução nos meios de transporte cada país experimentará em diferentes níveis essa mudança.
Existem diversos tipos de máquinas elétricas, cujas aplicações são as mais diversas e dependem das suas estruturas e princípios de funcionamento e de construção. Alguns exemplos são os Motores de Indução, os Motores Síncronos e os Motores de Corrente Contínua (CC). Nesse sentido, o uso de motores de indução é amplamente difundido, principalmente devido a sua versatilidade e diversidade em relação às demais máquinas, tornando-os uma solução confiável e econômica para muitas aplicações industriais, comerciais e residenciais.
Dessa forma, os motores de indução monofásicos possuem muitas aplicabilidades no mercado, sobretudo em equipamentos e aparelhos que requerem baixas potências, sendo mais robustos e mais baratos que os motores de indução trifásicos. Entretanto, esses equipamentos têm, também, algumas limitações, como menores eficiências e a necessidade de alguns dispositivos auxiliares.
Princípios Construtivos:
Assim como os motores síncronos e motores de indução trifásicos, os motores de indução monofásicos possuem uma parte fixa, chamada de estator, e uma parte móvel girante, o rotor. O estator é uma estrutura composta por um núcleo de ferro laminado com ranhuras, nas quais são inseridos os enrolamentos, que são alimentados pela rede elétrica. Já o rotor é composto, geralmente, por barras de cobre curto-circuitadas entre si nas extremidades por anéis condutores, formando um tipo de rotor chamado “Gaiola de esquilo”. O eixo é conectado ao rotor, o qual gira com o auxílio de rolamentos.
Além disso, para reduzir as perdas, alguns dispositivos de ventilação podem ser utilizados, assim como equipamentos auxiliares para a partida da máquina, como capacitores adicionais.
Princípio construtivo do motor de indução monofásico
Princípio de funcionamento:
O funcionamento de um motor de indução monofásico é baseado na indução eletromagnética, ou seja, pela interação entre os campos magnéticos criados pela corrente elétrica no estator e no rotor.
Conforme dito anteriormente, o estator contém enrolamentos, nos quais percorre uma corrente alternada que cria um campo magnético giratório ao redor das bobinas. Esse campo induz tensões e correntes no rotor, cujas barras estão curto-circuitadas, fazendo surgir um outro campo magnético girante, desta vez no rotor. O campo magnético gerado pelo rotor, que é oposto ao campo do estator, interage com o campo do estator, criando um torque mecânico, permitindo o movimento rotacional do rotor/eixo.
Para que o rotor consiga rotacionar, é necessário que o campo magnético do estator seja girante. Tomando como base a figura abaixo que representa um modelo simplificado do motor, quando a corrente alternada monofásica é aplicada ao enrolamento principal do estator, ela cria um campo magnético alternado, que varia em intensidade e direção com o tempo. Esse campo magnético alternado é estático e pulsante. Então, diferentemente do motor de indução trifásico, o monofásico não é capaz de realizar a partida sozinho. Portanto, é preciso utilizar alguns dispositivos auxiliares, como enrolamentos adicionais e capacitores de partida, caracterizando algumas técnicas de partida.
Representação do motor de indução monofásico
Importante observar que, apesar de apresentar torque nulo de partida, a rotação é mantida quando se consegue partir o motor através dos equipamentos auxiliares, podendo-se desconectá-los para maiores eficiências.
Técnicas de Partida:
Enrolamento de partida: Um enrolamento auxiliar é posicionado a 90° do enrolamento principal, criando um segundo campo magnético que possibilita um torque de partida. Após o motor atingir a velocidade adequada, pode-se desligar esse enrolamento secundário através de uma chave centrífuga.
Capacitor de partida: Nessa técnica, um capacitor é conectado em série com o enrolamento principal do estator. O capacitor cria uma defasagem de fase entre a corrente e a tensão no enrolamento, criando um campo giratório inicial que impulsiona o motor a partir. É possível desconectar tal dispositivo, também, através de um interruptor centrífugo.
Capacitor permanente: O princípio é igual ao da técnica por capacitor de partida, porém o capacitor permanece conectado ao enrolamento principal durante toda a operação da máquina de indução.
Partida direta: Em alguns casos, sobretudo em motores de baixa potência, o motor pode ser acionado manualmente, provocando a rotação do eixo.
Classificação dos motores e aplicações:
Os motores de indução monofásicos são classificados, em geral, através do método de partida utilizado. Alguns exemplos são:
Motor de fase dividida (Split-Phase): Utiliza um enrolamento auxiliar na partida, sendo comumente encontrado em equipamentos que necessitam de baixos ou médios torques de partida, como ventiladores e sopradores.
Motor a Capacitor de partida: O capacitor de partida é usado para iniciar a rotação da máquina e pode ser retirado posteriormente. Aplicado em máquinas que necessitam de maiores torques de partida, como bombas, compressores e refrigeradores.
Motor a Capacitor permanente: É utilizado um capacitor permanente, sendo comum em equipamentos cujas aplicações envolvem baixos ruídos, como máquinas de lavar e centrífugas.
Conclusão:
É evidente que o uso de motores de indução monofásicos em máquinas elétricas é extremamente difundido, principalmente devido a sua versatilidade e ao seu custo-benefício. Portanto, o avanço tecnológico nessa área é de suma importância para garantir maiores eficiências e viabilidades econômicas, tornando-se cada vez mais acessível.
Referências:
SEN, P. C. Principles of Electric Machines and Power Electronics. [s.l.] John Wiley & Sons, 2013.
Ao longo da história, a humanidade vem buscando formas de evoluir tecnologicamente de modo a alcançar maior lucro e eficiência na produção, fazendo com que o trabalho seja cada vez mais automatizado e menos dependente do esforço humano. Foi nessa incessante busca por uma sociedade cada vez mais moderna e produtiva que as Revoluções Industriais entraram em cena, fazendo com que novas formas de geração energética se tornassem um fator crucial para a implementação desse modelo de sociedade: maior eficiência energética implica em melhores mecanismos de transporte, comunicação, automatização, dentre outros. Inicialmente, combustíveis fósseis foram usados em massa como forma de alimentar energeticamente as indústrias, o que acarretou em um crescimento descontrolado de gases do efeito estufa (GEE) na atmosfera e trouxe uma das maiores ameaças que a humanidade terá de enfrentar: o aquecimento global.
Nesse sentido, cabe aos diversos países ao longo do globo, incluindo o Brasil, o desenvolvimento de aplicações e pesquisas capazes de tornar a produção energética cada vez menos dependentes de combustíveis fósseis. Para isso, foi estabelecido, em novembro de 2021, na Conferência do Clima das Nações Unidas, o compromisso internacional de atingir uma meta de neutralidade de emissões de GEE até 2050. Uma das formas de alcançar esse objetivo é através da transição energética, isto é, a passagem para uma matriz energética com baixa ou zero emissões de carbono, baseada em fontes renováveis.
Matriz energética brasileira
A matriz energética mundial é composta, em sua maior parte, pelo uso de fontes não renováveis, estando as fontes renováveis ocupando um espaço de 15%. Enquanto isso, a matriz energética do Brasil, de acordo com um levantamento de 2022, se destaca pelo uso de 47,4% destas fontes, como a energia eólica, energia hidráulica, energia solar, biomassa, dentre outras. Sendo assim, possuímos uma das matrizes mais limpas do planeta:
Essa característica da matriz energética brasileira é muito importante visto que as fontes de energia renováveis são a que menos transmitem GEE para a atmosfera. No entanto, a aplicação desse tipo de fonte é fortemente depende de fatores climáticos e atmosféricos, além de que sua instalação requer um investimento elevado, o que acarreta em um uso mais acentuado das fontes não renováveis, que ocupam um espaço de 52,6% em nossa matriz e são as maiores responsáveis por efeitos climáticos indesejáveis.
Matriz elétrica brasileira
A matriz elétrica brasileira se destaca ainda mais do que a energética se tratando do uso de fontes renováveis, já que a maior parte da energia elétrica do país vem das usinas hidrelétricas. De fato, no ano de 2022, foram utilizados 87,9% de fontes renováveis para a geração de energia elétrica:
Assim como na matriz energética, o Brasil ocupa posição de destaque no mundo quanto a produção de eletricidade baseada em fontes renováveis. Para efeitos de comparação, no mundo, somente 28,6% das fontes de geração de energia elétrica são renováveis. Enquanto isso, no Brasil, a utilização de fontes menos poluentes tem apresentado crescimento: somente no primeiro trimestre de 2023, houve uma expansão de 2.746,5 megawatts da capacidade instalada de geração de energia elétrica, motivadas em sua grande parte pela criação de novas usinas eólicas e solares fotovoltaicas.
Transição energética brasileira
Como podemos observar, o Brasil ocupa posição de destaque quanto à renovabilidade de suas fontes no mundo e já deu importantes passos em direção à transição energética. No entanto, isso não significa que estamos em uma posição confortável em relação a emissões de GEE. O diferencial do nosso país é que, apesar da geração de GEE não estar fortemente relacionada à geração de energia, são as mudanças no uso da terra (desmatamento) e agropecuária que, juntas, representam 73% das emissões totais no país.
Foi pensando em como o nosso país pode contribuir para a meta de neutralidade em GEE até o ano de 2050 que o Centro Brasileiro de Relações Internacionais (CEBRI), junto com o Banco Interamericano de Desenvolvimento (BID) e Empresa de Pesquisa Energética (EPE), elaborou o “Programa de Transição Enérgica” (PTE), em que nele três cenários distintos são avaliados: “Transição Brasileira” (TB), “Transição Alternativa” (TA) e “Transição Global” (TG), os quais convergem para o país dentro de um cenário de neutralidade de carbono até a metade deste século.
Em resumo, o cenário “Transição Brasileira” foi elaborado tendo como base os compromissos assumidos pelo país em sua Contribuição Nacionalmente Determinada (NDC), em que o Brasil transmitiu ao Acordo de Paris o objetivo de neutralidade climática até meados de 2050. Este cenário é focado em indicar trajetórias custo-eficientes para a mitigação de emissões de GEE, independente das ambições e compromissos dos demais países. O cenário “Transição Alternativa” trata-se de uma variação do cenário “Transição Brasileira”, em que neste caso são consideradas as incertezas do processo de difusão tecnológica à medida em que é tido em conta os impactos da própria mudança climática no setor energético. Já o cenário “Transição Global” foi elaborado considerando a contribuição do Brasil em um mundo que pretende limitar o aumento médio da temperatura superficial global em até 1,5°C em 2100, referente aos níveis pré-industriais.
Cenários para uma matriz energética cada vez mais limpa
Ao analisar a matriz energética, o documento mostra que em todos os três cenários avaliados houve queda da utilização de combustíveis fósseis em 2050 e aumento do uso de fontes renováveis. De fato, o estudo indica que em cada cenário de neutralidade climática o uso de fontes renováveis chegará a ocupar um espaço de 70% da matriz energética primária. Isso se deve principalmente ao elevado crescimento da biomassa e de fontes eólicas e solares.
A biomassa terá um papel fundamental quanto a descarbonização do setor de transportes, visto que trata-se de um setor mais difícil de ser eletrificado, como a aviação, o transporte marítimo e o transporte de carga a longa distância, sendo necessário a sua utilização para compensar a emissão de GEE por parte desses segmentos através da produção de biocombustíveis. A energia eólica também se destaca nesse sentido já que, no cenário TA, será responsável por um setor mais eletrificado. Dessa forma, é observada a descarbonização de todos os segmentos do setor de transportes.
O acentuado uso de biocombustíveis é de suma importância também tendo em vista que a sua produção pode estar associada à redução da quantidade de gás carbônico na atmosfera, através de tecnologias capazes de capturar e armazenar esse gás, chamadas de BECCS (BioEnergy with Carbon Capture and Storage), como a síntese do eucalipto ou pinus, plantas que capturam grandes quantidades de CO2 atmosférico durante o seu processo de desenvolvimento. Dessa forma, há uma remoção líquida de CO2 da atmosfera, já que o CO2 capturado no crescimento das árvores de pinus e eucalipto não será integralmente devolvido à atmosfera quando o biocombustível for utilizado em motores. Este processo é ilustrado na figura a seguir.
Fonte: CEBRI.
O petróleo é a fonte que mais reduz participação em todos os cenários, chegando, no cenário TA, a responder por apenas 5% da matriz em 2050. No entanto, a sua produção permanece constante em todos os cenários, transformando o Brasil em um grande exportador desse produto. Isso, por sua vez, contribui para a mitigação das emissões globais de GEE ao substituir óleos de maior intensidade de carbono no mercado, já que o petróleo brasileiro possui de cerca de 15 kg de CO2 por barril de óleo equivalente produzido (kg CO2eq /b) enquanto a média mundial é de 22 kg CO2eq /b.
As fontes hidráulicas e derivados da cana-de-açúcar perdem o seu destaque para outras biomassas, mas continuam a crescer de forma bastante significante em todos os cenários.
Quanto a geração de energia elétrica, o estudo projetou em todos os seus cenários a expansão do uso de fontes eólica e solar. Para a energia eólica, é esperado um aumento de participação para 17%, 47% e 14%, em 2050, nos cenários TB, TA e TG, respectivamente. O crescimento dessas fontes acarreta em uma diminuição da participação relativa da hidroeletricidade. No cenário TB a participação das hidrelétricas se reduz para 55%, no TG para 54% e no TA para 30%, em virtude das limitações físicas para a construção desse tipo de usina, que causa impactos ambientais e sociais.
Políticas públicas a serem adotadas
Ainda de acordo com o relatório, as principais medidas a serem adotadas até o ano de 2030 são aquelas referentes ao setor de uso do solo, visto que é esse o setor com o maior impacto ambiental no país. Para isso, foram recomendadas nove propostas a serem aplicadas nos próximos 7 anos a fim de permitir o sucesso dos cenários de transição energética apresentados ao longo do documento. São elas:
Adotar agenda de política energética e desenho de mercados que crie condições para caminhos flexíveis de descarbonização;
Minimizar arrependimentos mediante abordagens de mercados abertos, diversos e competitivos;
Harmonizar objetivos de desenvolvimento sustentável, transição energética e segurança energética;
Aproveitar vantagens competitivas existentes no Brasil para construir e financiar vantagens competitivas do amanhã, requalificando ativos e migrando expertises;
Cumprir objetivos/metas já estabelecidas pelo país em linha com o compromisso de neutralidade climática (líquida);
Assegurar que o setor energético brasileiro tenha uma transição justa, inclusiva e custo-efetiva;
Aperfeiçoar ou estabelecer arcabouços institucional, legal e regulatório que promovam o desenvolvimento e adoção de tecnologias e modelos de negócios com foco na redução de emissões e remoção de carbono de emissões de gases de efeito estufa;
Mapear, detalhar e disseminar informações sobre potencial técnico, econômico e de mercado para as alternativas identificadas nos diferentes cenários;
Aprofundar estudos sobre resiliência climática das soluções energéticas encontradas no projeto.
No decorrer dos anos o tema “tecnologia” ficou cada vez mais abrangente devido o avanço de vários setores ao mesmo tempo, principalmente no ramo da computação, nos limitaremos, neste texto, apenas na utilização das Inteligências Artificiais como ferramenta para gestão dos setores energéticos, muitos conceitos apresentados também se expandem para a indústria em geral.
Um dos assuntos mais comentados sobre tecnologia atualmente são os Chatbots e Image Creators, dois exemplos de grande relevância são:
ChatGPT da OpenAI: é um chatbot que recebe linguagem natural e consegue desenvolver uma conversa de forma “humana”, responder perguntas, criar textos, códigos.
Image Creator do Microsoft Bing: é um gerador de imagens, ele recebe uma informação de entrada em linguagem natural e transforma a frase em uma imagem.
O que um Chatbot e um gerador de imagens têm em comum? Ambos funcionam com o mesmo princípio Inteligência artificial (também conhecido como IA), e o que é uma inteligência artificial?
Antes de definirmos o assunto propriamente dito, precisamos definir o conceito de inteligência primeiro.
O que é Inteligência Artificial?
Segundo o dicionário, inteligência é:
“Todas as características intelectuais de um indivíduo, ou seja, a faculdade de conhecer, compreender, raciocinar, pensar e interpretar. A inteligência é uma das principais distinções entre o ser humano e os outros animais.”
Partindo deste princípio, podemos inferir que inteligência nada mais é do que a capacidade de compreender, raciocinar, pensar e interpretar, com este conceito esclarecido em nossas mentes, podemos definir o conceito de inteligência artificial.
“O conjunto de capacidades cognitivas e intelectuais expressadas por um sistema informático e combinações de algoritmos cujo propósito é a criação de máquinas que imitam a inteligência humana para realizar tarefas e que podem melhorar conforme novas informações”
Logo, chegamos a conclusão de que o conceito de inteligência artificial pode ser interpretado como a tentativa humana de desenvolver uma estrutura computacional que consiga desempenhar, por meio de algoritmos, atividades com o mesmo nível cognitivo e intelectual de um ser humano.
De fato, com a utilização dos dois exemplos apresentados anteriormente, podemos ver o quão poderoso podem ser essas ferramentas.
O uso das IA’s como ferramenta:
Quando imaginamos o poder cognitivo-computacional de uma máquina dentro de um contexto fechado, podemos expandir este conceito para vários setores, nos limitaremos ao setor energético e como o uso de IA’s tem papel fundamental, exemplificaremos de forma prática e cotidiana.
Melhora da eficiência energética: As IA’s em geral costumam ter uma boa performance com o processamento de grandes quantidades de dados. Os setores de geração de energia, como eólica e solar, costumam lidar com muitos dados, como por exemplo: a previsão do tempo, velocidade dos ventos, o nível de irradiação solar. Que, dentro dos setores citados, são variáveis que têm informações extremamente importantes para com relação a eficiência da planta como um todo. Sendo assim, o poder computacional para o processamento de dados tende a ser muito mais eficaz, desta forma, auxiliando os administradores das plantas de geração a tomar melhores decisões e assim gerar mais energia com o menor custo.
Monitoramento em tempo real: Os setores de gerenciamento de uma planta de geração de energia não se preocupam apenas com os fatores exógenos relacionados apenas a geração de energia, mas também os fatores como: dados relativos da demanda, reduzir perdas de energia e custos, self-healing, previsões de mercado, identificar padrões e tendências, monitoração e análise da qualidade da energia. Estes são alguns exemplos de demandas que necessitam ter constantes verificações e análises que podem ser desempenhadas com muita qualidade por IA’s, por poderem fazer processamentos em tempo real de altas quantidades de dados.
Tempo de manutenção: Um exemplo clássico e que está presente em boa parte das indústrias em geral é a parte da manutenção. O termo manutenção por muitas vezes pode ser interpretado como a troca ou conserto de elementos referentes a uma máquina ou sistema ou qualquer outra estrutura que necessite de revisões periódicas, porém, a manutenção é um setor estratégico, pois de lá vem boa parte dos custos de uma planta, a qualidade dos serviços e da planta como um todo, ou seja, um setor vital para uma empresa, entretanto há entraves como qualquer outro setor, estes que podem ser geridos por uma IA, auxiliando toda a cadeia estrutural da empresa, exemplos estes são:
Uma AI pode monitorar a performance do equipamento e calcular a sua média de eficácia dentro de um período.
Revisar os ciclos de manutenção, identificar falhas, prever a vida útil dos equipamentos.
Com base na análise de demanda pode reduzir os custos com manutenções corretivas e melhor alinhar os ciclos de manutenção preventiva ou preditiva com o setor de produção garantindo a menor perda possível.
Auxílio técnico: Com a popularização dos Chatbots como ChatGPT da OpenAI, nada nos limita a cerca de um chatbot referente a conceitos técnicos e que auxiliem os técnicos, inserindo informações dos sintomas ou defeitos de uma máquina, e recebendo possíveis diagnósticos, por métodos estatísticos e probabilísticos, e assim, reduzir o tempo de máquina parada.
Cibersegurança: De fato, com tanto avanço tecnológico, não há como negar que o mercado está cada vez mais dependente da nuvem e uma abrangente estrutura de rede de internet, de forma que governos, concorrentes ou grupos criminosos sabem disso e podem utilizar como foco de ataque. Dentro de uma planta de geração, o uso da nuvem é essencial para a produtividade e um ataque cibernético à rede pode gerar consequências sérias. Como dito antes, as IAs podem analisar padrões, com isto, ela pode tomar decisões como: bloquear sistemas, redirecionar o tráfego da rede, gerenciar backups, entre outras atividades importantes. Desta forma, sendo uma IA mais uma camada de proteção.
Conclusão
Os sistemas das IA’s estão cada vez mais modernos, versáteis e confiáveis. Vários modelos já são implementados em indústrias de setores diversos, o próprio Chat GPT já é utilizado para criação de relatórios, geração códigos e informações técnicas, logo, a tendência é que estas ferramentas acrescentem mais confiabilidade aos sistemas de gerenciamento e geração de energia, como já são implementados nas usinas fotovoltaicas e eólicas. O uso das IA’s dentro da indústria como um todo, reduz custos, aumenta o rendimento, auxilia na redução de poluentes, eleva a qualidade da mão de obra dos colaboradores e gera estabilidade e competitividade no mercado.
Referências:
Ahmad, T., Zhang, D., Huang, C., Zhang, H., Dai, N., Song, Y. and Chen, H., 2021. Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. Journal of Cleaner Production, 289, p.125834.
A energia elétrica é essencial para o desenvolvimento econômico, o avanço da sociedade e o bem-estar das pessoas, além de contribuir para a preservação do meio ambiente e do clima. O sistema elétrico é composto por um conjunto de equipamentos, instalações e redes que possibilitam a geração, transmissão, distribuição e utilização da energia elétrica. Esse sistema é constituído por diversas partes interligadas que atuam em conjunto, garantindo que a eletricidade seja produzida e fornecida aos consumidores finais de forma confiável, segura e eficiente.
Existem diversas formas de gerar energia, incluindo usinas hidrelétricas, termelétricas, nucleares e fontes renováveis, como a energia solar e eólica. A fim de levar a energia gerada aos locais de consumo, são necessárias redes elétricas de transmissão e distribuição, responsáveis por interligar as usinas às cidades, bairros e indústrias. A regulação do setor elétrico brasileiro é realizada pela ANEEL (Agência Nacional de Energia Elétrica), uma autarquia vinculada ao Ministério de Minas e Energia, cuja função é estabelecer as normas e regras para a operação do sistema elétrico e para a relação entre os diversos agentes desse setor.
Rede de transmissão
A Rede de Transmissão é a parte da rede elétrica responsável pelo transporte de energia elétrica de alta tensão das usinas geradoras para as subestações abaixadoras, onde começa a distribuição. Essas linhas de transmissão podem percorrer grandes distâncias e cruzar várias regiões do país.
A tensão gerada nos geradores trifásicos de corrente alternada é normalmente de 13,8 kV. Para que seja economicamente viável, é necessário utilizar uma subestação para elevar esse valor de tensão, a fim de reduzir as perdas causadas devido à distância até os centros consumidores. Isso ocorre porque as perdas de energia são proporcionais à corrente elétrica e ao quadrado da resistência.
A rede básica de transmissão é composta por linhas de corrente alternada nas seguintes faixas de tensão: 230 kV, 345 kV, 440 kV, 500/525 kV e 765 kV, e também por linhas de corrente contínua de 600 kV e 800 kV. Para as linhas a partir de 500 kV, é realizado um estudo econômico para determinar se a utilização será em tensão contínua ou alternada.
A rede de distribuição desempenha o papel de distribuir a energia elétrica aos consumidores finais na rede elétrica. Essa rede é composta por linhas de distribuição de baixa tensão que conectam as subestações às residências, comércios e indústrias. O sistema de distribuição engloba um conjunto de instalações e equipamentos elétricos que operam em níveis de alta tensão, média tensão e baixa tensão.
O processo de distribuição tem início na subestação abaixadora, a qual é utilizada quando as linhas de transmissão se aproximam das cidades, com o objetivo de evitar problemas tanto para os consumidores quanto para as estruturas urbanas. A tensão da linha é reduzida para valores padronizados nas redes primárias (13,8 kV e 34,5 kV) e secundárias (380/220V, 220V e 127V). Nas redes de distribuição secundárias, são realizadas as conexões aos consumidores, que podem ser monofásicos, bifásicos ou trifásicos.
O sistema elétrico brasileiro é um dos mais complexos e diversificados, possuindo uma matriz energética variada e um Sistema Interligado Nacional (SIN), que interliga a produção ao consumo por meio de uma extensa rede de transmissão.
A energia que alimenta o SIN provém principalmente de fontes hídricas de geração, contando também com a participação crescente de outras fontes renováveis, como a energia eólica e solar, as quais têm apresentado um aumento significativo em sua contribuição para a matriz energética.
Por outro lado, as usinas térmicas são construídas com o objetivo de operar próximas aos principais centros de carga durante períodos de baixo nível de água nos reservatórios das hidrelétricas, baixa velocidade dos ventos e baixa irradiação solar. Essas usinas térmicas contribuem para a segurança do SIN.
Sistemas Isolados
O Sistema Interligado Nacional é composto por quatro subsistemas: Sul, Sudeste/Centro-Oeste, Nordeste e a maior parte da região Norte. Apesar de sua ampla abrangência, existem áreas do país que não estão integradas ao SIN devido a questões técnicas e econômicas. Essas áreas constituem os Sistemas Isolados, localizados principalmente na região Norte, nos estados de Rondônia, Acre, Amazonas, Roraima, Amapá e Pará, além da ilha de Fernando de Noronha, em Pernambuco, e algumas localidades de Mato Grosso. A demanda por energia nessas regiões é atendida principalmente por usinas termelétricas movidas a óleo diesel.
Evolução do sistema de transmissão
A partir da década de 1930, com o processo de industrialização e urbanização do país, a demanda por eletricidade começou a crescer rapidamente. Para atender a essa demanda, foram construídas usinas hidrelétricas de maior porte em rios de grande vazão, como o Paraná, o São Francisco e o Tocantins. No entanto, essas usinas ficavam distantes dos centros consumidores e, até meados do século XX, o sistema elétrico era composto por sistemas isolados, o que exigia a construção de longas linhas de transmissão com tensões mais elevadas para transportar a energia até os centros consumidores em áreas urbanas.
Em 1962, foi criada a Eletrobras, responsável pela expansão da geração e transmissão de energia no Brasil. A Eletrobras passou a contar com subsidiárias como a Chesf (Companhia Hidrelétrica do São Francisco) e a Furnas, que forneciam energia para as regiões Nordeste e Sudeste, respectivamente. Além disso, foi criada a Eletrosul em 1968, terceira subsidiária da Eletrobras, responsável pelo abastecimento energético da região Sul. A quarta subsidiária da empresa, a Eletronorte, foi criada em 1973 para atender a região Norte.
No início da década de 1980, a Eletronorte e a Chesf interligaram as regiões Norte e Nordeste por meio de linhas de transmissão de 500 kV com extensão superior a 1.500 km. No Sul, em 1984, a usina Itaipu Binacional, localizada no rio Paraná entre o Brasil e o Paraguai, foi inaugurada. Essa usina é responsável por suprir uma parcela significativa da demanda energética do Sul e Sudeste do Brasil, além de fornecer cerca de 86,4% da energia consumida no Paraguai. Para integrar a usina ao sistema elétrico brasileiro, foram implantadas linhas de transmissão de 600 kV em corrente contínua e 750 kV em corrente alternada.
Entre 1990 e 2000, iniciou-se o processo de interligação das regiões Norte/Nordeste e Sul/Sudeste, conhecido como interligação Norte-Sul, que contou com 1,3 km de extensão de linhas de transmissão e tensão de 500 kV. Nesse mesmo período, em 1994, a usina hidrelétrica de Xingó, no Nordeste, foi inaugurada.
Posteriormente, em 2009, Acre e Rondônia foram integrados ao sistema elétrico brasileiro, e em 2017, entrou em operação a primeira linha de corrente contínua, que interligou a usina de Belo Monte, no estado do Pará, ao Sudeste, com uma tensão de 800 kV e extensão de mais de 200 km.
O principal desafio do sistema consiste em integrar e otimizar os recursos energéticos de cada região, aproveitando o excedente das áreas com menor demanda e suprindo as necessidades das áreas com maior demanda. Para isso, são realizados estudos de planejamento pelos Grupos de Estudo de Transmissão (GET), coordenados pela EPE, a fim de viabilizar a instalação de novas linhas de transmissão que serão integradas à Rede Básica.
Atualmente, com o significativo aumento na geração de energia solar e eólica no Nordeste, surge a dúvida sobre o que fazer com a capacidade excedente na própria região. Diante dessa questão, o Ministério de Minas e Energia anunciou, em maio de 2023, o Plano de Outorgas de Transmissão de Energia Elétrica (POTEE), estabelecendo um investimento de R$ 56 bilhões em linhas de transmissão para escoamento de energia renovável na região Nordeste.
Em comemoração a mudança de nome do capitulo, que ocorreu em 22 de abril de 2008, o PES deixou de ser Power Engineering Society para se tornar Power & Energy Society, com o objetivo de ajudar o meio ambiente e a sociedade. Desta forma, todas as atividades realizadas no mês de abril celebram o dia do PES.
O tema desse ano é Powering a climate safer future, e por isso, o IEEE PES UFBA e o Grupo de Sistemas Elétricos de Potência Integrados (G-SEPi) tem o prazer de convidar todos para o evento que estaremos realizando no dia 28 de abril, de maneira híbrida.
Atividades oferecidas no evento:
⚡️Funcionalidades da UTE-BA e Principais Ações de Sustentabilidade⚡️ 📍Auditório Magno Valente – 6° Andar da Escola Politécnica da UFBA ⏰ 10:50h 🗓 28/04/2023
⚡️Pesquisa, Desenvolvimento e Inovação na Neoenergia⚡️ 📍Online (O link será divulgado via e-mail para os inscritos) ⏰ 16h 🗓 28/04/2023
A energia elétrica é fundamental para o desenvolvimento econômico e social de um país, implicando a necessidade de estudo e de acompanhamento dos parâmetros operacionais. A sociedade atual demanda, de forma crescente, a continuidade do fornecimento de energia elétrica e a garantia de que a energia fornecida atenda a requisitos mínimos de qualidade. Com isto, existe uma área de estudo com o intuito de proteger o Sistema Elétrico de Potência (SEP) contra operações não normais do sistema.
A proteção de qualquer sistema elétrico é projetada com o objetivo de diminuir ou evitar risco de vida e danos materiais, quando ocorrer situações anormais durante a operação do mesmo. Geralmente, tais os sistemas elétricos são protegidos contra sobretensões (internas e descargas atmosféricas) e sobrecorrentes (curtos-circuitos).
Normalmente, a proteção contra curtos circuitos é feita utilizando equipamentos eletromecânicos, digitais ou eletrônicos, basicamente utiliza fusíveis e relés que acionam disjuntores. O equipamento fundamental para proteção contra sobretensões é o para-raios.
Funções básicas de um sistema de proteção
As principais funções de um sistema de proteção são:
Salvaguardar a integridade física de operadores, usuários do sistema e animais;
Evitar ou minimizar danos materiais;
Retirar de serviço um equipamento ou parte do sistema que se apresente defeituoso;
Melhorar a continuidade do serviço;
Diminuir despesas com manutenção corretiva;
Melhorar os índices DEC (duração de interrupção equivalente por consumidor) e FEC (frequência de
interrupção equivalente por consumidor).
Definições usadas na proteção de sistemas
Confiabilidade: Definida como a probabilidade de funcionamento correto da proteção quando houver a necessidade de sua atuação.
Seletividade: o sistema de proteção que possui esta propriedade é capaz de reconhecer e selecionar as
condições que deve operar, a fim de evitar operações desnecessárias.
Sensibilidade: É a habilidade que um sistema tem de identificar uma situação de funcionamento anormal em que exceda o nível normal ou detectar o limiar em que a proteção deve atuar.
Velocidade: um sistema de proteção deve possibilitar o desligamento do trecho ou equipamento
defeituoso no menor tempo possível.
Níveis de atuação de um sistema de proteção
De modo geral, a atuação de um sistema de proteção se dá em três níveis:
Proteção principal: Em caso de falta dentro da zona protegida, é quem deverá atuar primeiro.
Proteção de retaguarda: aquela que só deverá atuar quando ocorrer falha da proteção principal.
Proteção auxiliar: é constituída por funções auxiliares das proteções principal e de retaguarda, cujos os objetivos são sinalização, alarme, temporização, intertravamento, etc.
Na figura abaixo é demostrado alguns níveis de proteção. As zonas de proteção (retângulos tracejados) podem funcionar como proteção principal ou de retaguarda, a depender da localização da falta.
Figura 1: Proteção de um sistema de elétrico em alta-tensão.
Tipos de proteção elétrica
Entre os diversos tipos de proteção, temos alguns comumente usados:
Proteção diferencial (87): A proteção diferencial baseia-se na comparação entre duas correntes elétricas, operando quando a diferença entre essas duas corrente ultrapassa um valor predeterminado.
Proteção de sobrecorrente (50, 51): A proteção diferencial baseia-se na comparação entre duas correntes elétricas, operando quando a diferença entre essas duas corrente ultrapassa um valor predeterminado.
Proteção de distância (21): A proteção de distância é feita por relés de distância. O relé de distância é alimentado por duas grandezas de entrada, tensão (V) e corrente (I), amostradas por TPs e TCs conectados ao sistema elétrico. Sua operação é baseada na impedância aparente da rede que é medida pelo relé.
Referências
Volume-2-protecao-de-sistemas-aereos-de-distribuicao. Ed Campos / Eletrobrás.
The Art & Science Of Protective Relaying. C. Russell Mason.
Apostila de Proteção de Sistemas Elétricos. Prof. Marcos A. Dias de Almeida – Natal, fevereiro de 2000.
Uma das atividades do Grupo de Sistemas Elétricos de Potência (G-SEPi) e do IEEE PES UFBA é promover visitas técnicas à comunidade acadêmica de Engenharia Elétrica da UFBA. No dia 15/12/2022, quinta-feira, organizamos uma visita técnica à Braskem, localizada Camaçari. A visita técnica contou com o suporte do Professor Kleber Freire, do setor de transportes da Universidade Federal da Bahia e da Equipe Braskem.
“Criada em agosto de 2002 pela integração de seis empresas da Organização Odebrecht e do Grupo Mariani, a Braskem é, hoje, a maior produtora de resinas termoplásticas nas Américas e a maior produtora de polipropileno nos Estados Unidos. Sua produção é focada nas resinas polietileno (PE), polipropileno (PP) e policloreto de vinila (PVC), além de insumos químicos básicos como eteno, propeno, butadieno, benzeno, tolueno, cloro, soda e solventes, entre outros. Juntos, compõe um dos portfólios mais completos do mercado, ao incluir também o polietileno verde, produzido a partir da cana-de-açúcar, de origem 100% renovável.”
Durante a visita, engenheiros(as) e técnicos(as) da Braskem apresentaram as normas de segurança da fábrica e dos EPIs necessários, realizaram um overview a respeito da operação da empresa e, em seguida, os membros participantes foram apresentados a algumas das etapas da operação, como a subestação, geradores, turbinas a vapor, sala de controle. Equipamentos como retificadores, inversores e banco de baterias também foram apresentados aos visitantes. Experiências como esta complementam a formação do estudante e se mostram como um grande motivador para o discentes.
É com muita satisfação que o Grupo de Sistemas Elétricos de Potência Integrados da UFBA (G-SEPi) e o IEEE Power and Energy Society UFBA anunciam o 1° Circuito de Palestras do G-SEPi.
O evento tem como finalidade promover a aproximação dos alunos de graduação em Engenharia Elétrica com relação às demandas do mercado. O circuito de palestras contará com profissionais, engenheiros e engenheiras eletricistas que atuam em diferentes áreas, em empresas como Braskem, Tempest, Prefeitura de Salvador e CCR.
Palestras: 🟩 Iluminação Pública e Tecnologias migratórias rumo a Cidade Inteligente | Prefeitura de Salvador 🟩 Engenharia Elétrica na cibersegurança: possibilidade ou necessidade? |Tempest 🟩 Engenharia na Indústria | Braskem 🟩 CCR Metrô Bahia no desenvolvimento urbano e profissional de Salvador |CCR
O evento irá ocorrer presencialmente na Escola Politécnica da UFBA. Data: 04/11/2022 Horário: 19h Local: Auditório Leopoldo Amaral – Escola Politécnica da UFBA Link para inscrição:https://forms.gle/rtXMGN5r61R5EWBL9